松下蓄电池LC-P127R2ST1产品特征:
1、安全性能好:正常使用下无电解液漏出,无电池膨胀及破裂。
2、放电性能好:放电电压平稳,放电平台平缓。
3、耐震动性好:完全充电状态的电池完全固定,以4mm的振幅,16.7Hz的频率震动1小时,无漏液、膨胀,开路电压正常。
4、耐冲击性好:完全充电状态的电池从20cm高处自然落至1cm厚的硬木板上3次。无漏液、膨胀,开路电压正常。
5、耐过放电性好:25摄氏度,完全充电状态的电池进行定电阻放电3星期(电阻值相当于该电池1CA放电要求的电阻),恢复容量在75%以上。
6、耐过充电性好:25摄氏度,完全充电状态的电池0.1CA充电48小时,无漏液,无电池膨胀及破裂,开路电压正常,容量维持率在95%以上。
7、耐大电流性好:完全充电状态的电池2CA放电5分钟或10CA放电5秒钟。无导电部分熔断,无外观变形。
松下电池电码防伪技术特点:
1、技术的不可伪造性:电码防伪标识浓缩了多项高科技手段,具有*特的防伪机理。即便是伪造者掌握了该防伪标识的制造方法,却无法伪造出与真品相对应的正确防伪密码,更无法将伪造的密码信息送存于全国中心数据库中。因此从根本上杜绝了大批量工业化造假行为。
2、防伪标识的一性:具有一性,即一件产品一个编码,由计算机随机加密生成,绝无重复。
3、密码的保密性:每个防伪码都是隐藏在电码防伪标签中,只有破坏性刮掉涂层或揭开标识物,才能看到密码。当密码被**查询后,中心数据库自动记录下查询的时间,并将该件产品的密码档案自动消除从而排除了防伪密码重复使用的可能性。
4、鉴别的简易性:消费者只需拨打电话或上网查询,便可知真伪。
标签颜色及语音由原来的一种标签,一种语音系统变更为五种标签,对应五种语音系统,请注意识别:
查询方法:
揭开**层,可见16位的一组数码,旧标签用原有系统查询,新标签用新系统查询。查询时请依据该枚
标签表面提示的方法查询。
松下蓄电池LC-P127R2ST全新现货
导线电阻和触点电阻,电压继续下降,经过一段时间以后,到达新的电化学平衡,进入放电平台期,电压变化不明显,放热反应加电阻释热使电池温升较高。放电电压曲线近似单体放电曲线,持续放电,电压曲线进入马尾下降阶段,较化阻抗增大,输出效率降低,热耗增大,接近终止电压时停止放电。
过放电
考虑组内单体电池,必有相对的过放电情况。在放电后期,电压接近马尾曲线,组中单体容量正态分布,电压分布很复杂,容量较小的单体电压跌落得也就较早、较快,若这时其它电池电压降低不是很明显,小容量单体电压跌落情况被掩盖,已经被过度放电。
观察单体过放情况,进入马尾曲线以后,若电流持续较大,电压迅速降低,并很快反向,这时电池被反方向充电,或称被动放电,活性物质结构被破坏,另一种副反应很快发生,过一段时间,电池活性材料接近全部丧失,等效为一个无源电阻,电压为负值,数值上等于反充电流在等效电阻上产生的压降,停止放电后,原电池电动势消失,电压不能恢复,因此,一次反充电足以使电池报废。
松下蓄电池公司十分重视产品的质量,积极通过各种有效手段保证产品质量在1998年3月取得ISO9002国际质量管理体系的认证。所有工艺标准完全采用日本松下标准通过全面质量管理活动(QC)等提高员工的质量意识和改进产品质量积极推进质量相关的培训,对部门的管理者和重要岗位进行培训,考核合格后进入作业。
松下蓄电池公司拥有世界水平的蓄电池检测设备,有效保证产品质量,防止不良产品的流出生产的重要工序都具有**检测的设备拥有世界先进的电池实验室,全部计算机联网检测,原材料和在制品分析采用ICP高档的分析仪器。
松下电池能满足客户需要,被广泛应用于各个领域
安全性能好:松下蓄电池正常使用下无电解液漏出,无电池膨胀及破裂。
放电性能好:松下蓄电池放电电压平稳,放电平台平缓。
耐震动性好:松下蓄电池完全充电状态的电池完全固定,以4mm的振幅,16.7HZ的频率震动1小时,无漏液,无电池膨胀及破裂,开路电压正常。
耐冲击性好:松下蓄电池完全充电状态的电池从20CM高处自然落至1CM厚的硬木板上3次无漏液,无电池膨胀及破裂,开路电压正常。
耐过放电性好:松下蓄电池25摄氏度,完全充电状态的电池进行定电阻放电3星期(电阻只相当于该电池1CA放电要求的电阻),恢复容量在75%以上.
耐充电性好:松下蓄电池25摄氏度,完全充电状态的电池0.1CA充电48小时,无漏液,无电池膨胀及破裂,开路电压正常,容量维持率在上 95%以.
耐大电流性好:松下蓄电池完全充电状态的电池2CA放电5分钟或10CA放电5分钟。无导电部分熔断,无外观变形。
松下蓄电池描述:
松下电池**命、高容量、优越的过放电后的恢复性;
松下电池气密性好、安全性高、可快速充电;
松下电池防漏液的结构、具有免维护的特性;
松下电池具有抗过充电、抗过放电、耐振动、耐冲击的特点,
松下电池可任意位置放置,便于保护和使用;
松下电池能量密度的提高,实现了电池的小型化,轻量化;
目前充电主要是限压限流法,初期恒流(CC)充电,电池接受能力较强,主要为吸热反应,但温度过低时,材料活性降低,可能提前进入恒流阶段,因此在北方冬天低温时,充电前把电池预热可以改善充电效果。随着充电过程不断进行,较化作用加强,温升加剧,伴随析气,电极过电位增高,电压上升,当荷电达到约70~80%时,电压达到较高充电限制电压,转入恒压(CV)阶段。理论上并不存在客观的过充电压阈值,若理解为析气、升温就意味着过充,则在恒流阶段末期总是发生不同程度的过充,温升达到40~50摄氏度,壳体形变容易感测,部分逸出气体还可以复合,另一些就作为不可逆反应的结果,损失了容量,这可以看作电流强度**出电池接受能力。在恒压阶段,有称涓流充电,大约花费30%的时间充入10%的电量,电流强度减小,析气、温升不再增加,并反方向变化。
松下蓄电池官网